
Finding the length of a hypotenuse

Ex:) Find the length of the hypotenuse of the triangle.

OYO:) Find the length of the hypotenuse of the triangle.

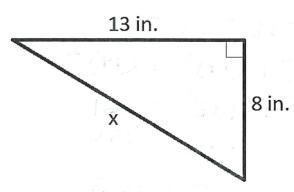
Notes:

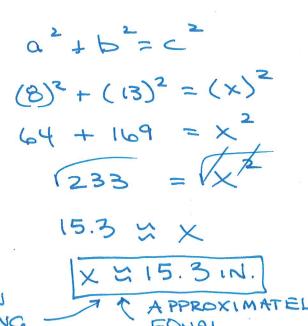
The triangle.

$$a^{2} + b^{2} = c^{2}$$

$$(15)^{2} + (8)^{2} = c^{2}$$

$$2a5 + b4 = c^{2}$$

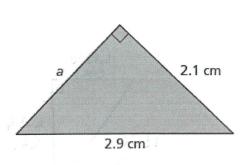

$$1289 = (c^{2})$$


$$17 = c$$

$$1c = 17f + c$$

Ex:) Determine the length of the unknown side of the triangle. Round to the nearest tenth of an inch.

Notes:

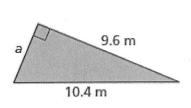


TO

Finding the length of a leg

Ex:) Find the missing length of the triangle.

Notes:


$$a^{2} + b^{2} = c^{2}$$
 $a^{2} + (z.1)^{2} = (z.9)^{2}$
 $a^{2} + 4.41 = 8.41$
 $-4.41 = 4.41$

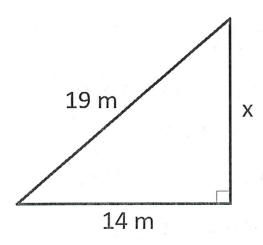
$$a^{2} = 4$$

$$a^{2} = 4$$

OYO:) Find the missing length of the triangle.

Notes:

$$a^{2} + b^{2} = c^{2}$$
 $a^{2} + (9.6)^{2} = (10.4)^{2}$
 $a^{2} + 92.16 = 108.16$
 $-92.16 - 92.16$


$$a^{2} = 16$$

$$a^{2} = 4 m$$

OYO:) Determine the length of the unknown side of the triangle.

Round to the nearest tenth of a meter.

Notes:

$$a^{2}+b^{2}=c^{2}$$
 $(x)^{2}+(14)^{2}=(19)^{2}$
 $x^{2}+196=361$
 $-196=-196$
 $x^{2}=(165)$

X 2 12.8 m